G sLawmisy

Smart Contract
Security Audit Report

Table Of Contents

1 Executive Summary
2 Audit Methodology
3 Project Overview
3.1 Project Introduction
3.2 Vulnerability Information
4 Code Overview
4.1 Contracts Description
Deployed Addresses
Core Contracts
Oracle Adapters
Swap Helpers
4.1 Visibility Description
4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2025.10.12, the SlowMist security team received the Musk Identity security audit application for Account
Abstraction, developed the audit plan according to the agreement of both parties and the characteristics of the
project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete
security test on the project in the way closest to the real attack.The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Conduct security testing on code modules through the scripting tool, observing the

Grey box testing] i o
internal running status, mining weaknesses.

White box Based on the open source code, non-open source code, to detect whether there are
testing vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description
Critical Critical severity vulnerabilities will have a significant impact on the security of the DeFi
ritica
project, and it is strongly recommended to fix the critical vulnerabilities.
Hiah High severity vulnerabilities will affect the normal operation of the DeFi project. It is
g strongly recommended to fix high-risk vulnerabilities.
Medi Medium severity vulnerability will affect the operation of the DeFi project. It is
edium
recommended to fix medium-risk vulnerabilities.
Low severity vulnerabilities may affect the operation of the DeFi project in certain
Low scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.
Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.
Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

® Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

® Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass
1 Overflow Audit -
2 Reentrancy Attack Audit -
3 Replay Attack Audit -
4 Flashloan Attack Audit -
5 Race Conditions Audit Reordering Attack Audit
Access Control Audit
6 Permission Vulnerability Audit
Excessive Authority Audit
External Module Safe Use Audit
Compiler Version Security Audit
Hard-coded Address Security Audit
7 Security Design Audit Fallback Function Safe Use Audit
Show Coding Security Audit
Function Return Value Security Audit
External Call Function Security Audit

Serial Number

Audit Class

Audit Subclass

Block data Dependence Security Audit

7 Security Design Audit
tx.origin Authentication Security Audit

8 Denial of Service Audit -
9 Gas Optimization Audit -
10 Design Logic Audit -
11 Variable Coverage Vulnerability Audit -
12 "False Top-up" Vulnerability Audit -
13 Scoping and Declarations Audit -
14 Malicious Event Log Audit -
15 Arithmetic Accuracy Deviation Audit -
16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Infroduction

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status
Arbitrary transfer
N1) i Design Logic Audit Low Fixed
issues

Issue of the return

N2 alue Design Logic Audit Suggestion Acknowledged
valu
Preemptive Race Conditions))
N3 o - Suggestion Fixed
initialization Vulnerability
Conditional
N4 Others Suggestion Fixed

judgement issue

N5 Redundant codes Others Suggestion Acknowledged

The issue of the)))))
N6 Design Logic Audit High Fixed
transfer amount

Shadow variable))) ,)
N7) Design Logic Audit High Fixed
issue

N8 Value subject matter Design Logic Audit Low Acknowledged

Data from Oracle

NO Title Category Level Status
issue
) Denial of Service])
N9 The DoS issue . Medium Fixed
Vulnerability
o Gas Optimization .
N10 Gas optimization) Suggestion Acknowledged
Audit
Flag Bit Suggestions
N11 for Initialisation Design Logic Audit Low Acknowledged
Functions
. Malicious Event .
N12 Missing event record) Suggestion Acknowledged
Log Audit
call() should be used]
N13) Others Suggestion Acknowledged
instead of transfer()
Risk of excessive Authority Control
N14 . . i Low Acknowledged
authority Vulnerability Audit
PayMaster signature
N15 o Design Logic Audit High Fixed
check is missing
Risk of Stale Price
N16 Design Logic Audit Low Fixed

4 Code Overview

4.1 Contiracts Description

Commit: 9287577b95e805¢c918d8dc9d6a505202092ebc87

Review Commit:2f3982738fa4706b4f5806ac3657a8e36a90a6b0

The main network address of the contract is as follows:

Deployed Addresses

Deployed on Solana, POLYGON, OP, AVAX, ARBITRUM

Core Contracts

Contracts Address
EntryPoint 0xdc5319815CdAaC2d113f7F275bc893ed7D9cA469
TokenPaymaster 0xd348FB9D8a421f5B3CB077e819dE38c9Cd7fe6F2
FreeGasPaymaster 0xd4cA5B29f8E222aAEEF944F445D1aC368a5d7694

DefaultCallbackHandler

0xc9b02677ebFa3f4dA43EBEfC6fc38e11148b664D

SmartAccount

0x3DbeB76d9d9444D7Db9DcF3799e17ACd247f8fac

SmartAccountProxyFactory

0x81E11c4701C5189b0122ef42DaF1fF3d453D968E

UserOperationHelper

0x9A998225AB0A872665B35a8dC615aAbd5e73Cd12

BundlerDepositHelper

0x71C9F21517F85D36A0FCDB8E31Ba8a8e28622cFa

Contracts deployed on ETH, OKTC, BNB, POLYGON, OP, AVAX, ARBITRUM have the same address.

Oracle Adapters
Networks Contracts Address
ETH ChainlinkOracleAdapter 0x7bB8FF337C5172E004C0dEca560c1c1bB7f7FFOA
OKTC EXOracleAdapter 0x9857f966529cb205689B7D698f495eA423E48d9¢c
BNB ChainlinkOracleAdapter 0x7bB8FF337C5172E004C0dEca560c1c1bB7f7FFOA
POLYGON ChainlinkOracleAdapter 0x7bB8FF337C5172E004C0dEca560c1c1bB7f7FFOA
OP ChainlinkOracleAdapter 0x7bB8FF337C5172E004C0dEca560c1c1bB7f7FFOA
AVAX ChainlinkOracleAdapter 0x7bB8FF337C5172E004C0dEca560c1c1bB7f7FFOA
ARBITRUM ChainlinkOracleAdapter 0x7bB8FF337C5172E004C0dEca560c1c1bB7f7FFOA

Swap Helpers

Networks

Contracts

Address

ETH

UniSwapV3Adapter

0x1C821cD745924f2E008e2B6759¢c272a1736c6d8b

Networks Contracts Address
OKTC OKCSwapAdapter 0x03e70e92dC6ED4b65B7ace9b44b85Bb2b55400f2
BNB UniSwapV2Adapter 0x7f4D0B7ee0a9a75D947419F8fDfB78d5aB91E57e
POLYGON UniSwapV3Adapter 0x1C821cD745924f2E008e2B6759¢272a1736c6d8b
oP UniSwapV3Adapter 0x1C821cD745924f2E008e2B6759¢272a1736c6d8b
AVAX TradeJoeV2Adapter 0xE92E3568087D2999227c7a289eAf3c4a29c4CB90
ARBITRUM UniSwapV3Adapter 0x1C821cD745924f2E008e2B6759¢272a1736c6d8b

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

Executor
Function Name Visibility Mutability Modifiers
execute Internal Can Modify State -
FallbackManager

Function Name Visibility Mutability Modifiers
getFallbackHandler Public - -

setFallbackHandler External Can Modify State authorized
setFallbackHandler Internal Can Modify State -
initializeFallbackHandler Internal Can Modify State -
<Fallback> External Can Modify State -

GuardManager
Function Name Visibility Mutability Modifiers

GuardManager

getGuard Public - -
setGuard External Can Modify State authorized
initializeGuard Internal Can Modify State -
execTransactionBatch External Can Modify State authorized
executeWithGuard Internal Can Modify State -
executeWithGuardBatch Internal Can Modify State -
ModuleManager
Function Name Visibility Mutability Modifiers
initializeModules Internal Can Modify State -
enableModule Public Can Modify State authorized
disableModule Public Can Modify State authorized
isModuleEnabled Public - -
execTransactionFromModule Public Can Modify State -
execTransactionFromModuleReturnData Public Can Modify State -
OwnerManager
Function Name Visibility Mutability Modifiers
initializeOwners Internal Can Modify State -
isOwner Public - -
getOwner Public - -
SignatureManager
Function Name Visibility Mutability Modifiers

SignatureManager

<Constructor> Public Can Modify State -
getUOPHash Public - -
getUOPSignedHash Public - -
validateUserOp Public Can Modify State -
validateUserOpWithoutSig Public Can Modify State -
isValidSignature External - -
SecuredTokenTransfer
Function Name Visibility Mutability Modifiers
transferToken Internal Can Modify State -
SelfAuthorized
Function Name Visibility Mutability Modifiers
requireSelfCall Private - -
SignatureDecoder
Function Name Visibility Mutability Modifiers
signatureSplit Internal - -
Singleton
Function Name Visibility Mutability Modifiers
updateImplement External Can Modify State authorized
DefaultCallbackHandler
Function Name Visibility Mutability Modifiers

DefaultCallbackHandler

onERC1155Received External - -
onERC1155BatchReceived External - -
onERC721Received External - -
tokensReceived External - -
supportsInterface External - -

SimulateTxAccessor

Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State -
simulate External Can Modify State onlyDelegateCall
SmartAccountinitCode
Function Name Visibility Mutability Modifiers
getlInitCode Public - -
SmartAccount
Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State SignatureManager
Initialize External Can Modify State -
validateUserOp Public Can Modify State onlyEntryPoint
validateUserOpWithoutSig Public Can Modify State onlyEntryPoint
execTransactionFromEntrypoint Public Can Modify State onlyEntryPoint
execTransactionFromEntrypointBatch External Can Modify State onlyEntryPoint
execTransactionFromModule Public Can Modify State -

SmartAccountProxy

Function Name Visibility Mutability Modifiers
initialize External Can Modify State -
masterCopy External - -
<Fallback> External Payable -
SmartAccountProxyFactory

Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State -

setSafeSingleton Public Can Modify State onlyOwner
proxyRuntimeCode Public - -
proxyCreationCode Public - -
deployProxyWithNonce Internal Can Modify State -
createProxyWithNonce Internal Can Modify State -
createAccount Public Can Modify State -
getAddress Public - -

ChainlinkOracleAdapter
Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State PriceOracle

exchangePrice Public - -
EXOracleAdapter
Function Name Visibility Mutability Modifiers
setExOraclePriceData Public Can Modify State onlyOwner

EXOracleAdapter

setPriceType Public Can Modify State onlyOwner
setOracleDecimals Public Can Modify State onlyOwner
<Constructor> Public Can Modify State PriceOracle
exchangePrice Public - -
FreeGasPaymaster
Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State -
addToWhitelist External Can Modify State onlyOwner
removeFromWhitelist External Can Modify State onlyOwner
withdrawDepositNativeToken Public Can Modify State onlyOwner onlyWhitelisted
getHash Public - -
validatePaymasterUserOp External - -
validatePaymasterUserOpWithoutSig External - -
postOp External Can Modify State -
TokenPaymaster
Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State -
<Receive Ether> External Payable -
postOp External Can Modify State onlyEntryPoint
getHash Public - -
validatePaymasterUserOp External - -
validatePaymasterUserOpWithoutSig External - -

withdrawERC20 E‘I)'(cglérengququ ;teCran Modify State onlyOwner onlyWhitelisted
withdrawDepositNativeToken Public Can Modify State onlyOwner onlyWhitelisted
swapToNative External Can Modify State onlyOwner
setSwapHelper External Can Modify State onlyOwner
setPriceOracle External Can Modify State onlyOwner
addToWhitelist External Can Modify State onlyOwner
removeFromWhitelist External Can Modify State onlyOwner
SwapHelper
Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State -
<Receive Ether> External Payable -
swapToNative External Can Modify State -
swapToNativeViaUniV2 Internal Can Modify State -
slippageOf Public - -
setSlippage External Can Modify State onlyOwner
PriceOracle
Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State -
setPriceFeed External Can Modify State onlyOwner
exchangePrice Public - -
exchangeRate External - -
getValueOf External - -
tokenDecimals Public - -
setDecimals External Can Modify State onlyOwner

Storage

Function Name Visibility Mutability Modifiers
setWalletWhitelistControl Public Can Modify State onlyOwner
setUnrestrictedBundler Public Can Modify State onlyOwner
setModuleWhitelistControl Public Can Modify State onlyOwner
setBundlerOfficial Whitelist Public Can Modify State onlyOwner
setWalletProxyFactoryWhitelist Public Can Modify State onlyOwner
setModuleWhitelist Public Can Modify State onlyOwner
validateModuleWhitelist Public - -
validateWalletWhitelist Public - -
BundlerDepositHelper
Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State -
setValidEntryPoint Public Can Modify State onlyOwner
batchDepositForBundler Public Payable -
OKXEntryPoint
Function Name Visibility Mutability Modifiers
Can Modif OKXEntryPointLogi
<Constructor> Public Y yrol g
State C
simulateValidationWithWalletWhitelistValida Can Modify
External -
te State
)) . Can Modify
simulateHandleOpWithoutSig External -
State
Can Modif
_validatePrepaymentWithoutSig Internal Stat Y -
ate

OKXEntryPoint

. . . Can Modify
_validateAccountPrepaymentWithoutSig Internal -
State
. . . Can Modify
_validatePaymasterPrepaymentWithoutSig Internal -
State
Can Modify
_executeUserOpWithResult Internal -
State
Can Modify
innerHandleOpWithResult External -
State
OKXEntryPointLogic
Function Name Visibility Mutability Modifiers
<Constructor> Public Can Modify State -
handleOps Public Can Modify State -
handleOps Public Can Modify State -
handleOp External Can Modify State -
handleAggregatedOps Public - -
StakeManager
Function Name Visibility Mutability Modifiers
getDepositinfo Public - -
getStakelnfo Internal - -
balanceOf Public - -
<Receive Ether> External Payable -
internalIncrementDeposit Internal Can Modify State -
depositTo Public Payable -
addStake Public Payable -
unlockStake External Can Modify State -

StakeManager

withdrawStake External Can Modify State -
withdrawTo External Can Modify State -
SenderCreator
Function Name Visibility Mutability Modifiers
createSender External Can Modify State -
EntryPoint
Function Name Visibility Mutability Modifiers

_compensate Internal Can Modify State -
_executeUserOp Internal Can Modify State -
handleOps Public Can Modify State -
handleAggregatedOps Public Can Modify State -
simulateHandleOp External Can Modify State -
innerHandleOp External Can Modify State -
getUserOpHash Public - -
_copyUserOpToMemory Internal - -
simulateValidation External Can Modify State -
_getRequiredPrefund Internal - -
_createSenderIfNeeded Internal Can Modify State -
getSenderAddress Public Can Modify State -
_validateAccountPrepayment Internal Can Modify State -
_validatePaymasterPrepayment Internal Can Modify State -

EntryPoint

_validateDeadline Internal - -
_validatePrepayment Internal Can Modify State -
_handlePostOp Internal Can Modify State -
getUserOpGasPrice Internal - -

min Internal - -
getOffsetOfMemoryBytes Internal - -
getMemoryBytesFromOffset Internal - -
numberMarker Internal - -

4.3 Vulnerability Summary

[N1] [Low] Arbitrary transfer issues
Category: Design Logic Audit

Content
¢ contracts/wallet/base/SignatureManager.sol

Since the function can be executed in its entirety even with the signature data of a non-owner, all the nativeTokens in

the contract can be transferred by simply constructing a signature data.

function
validateUserOp(UserOperation
calldata userOp, bytes32,
address,
uint256 missingAccountFunds
) public virtual returns (uint256)
{ if (missingAccountFunds != 0)
{
payable (msg.sender) .call{
value: missingAccountFunds,
gas: type (uint256) .max
PO g

t’{:ﬁ sLawmist Focusing on Blockchain Ecosystem Security

}

unchecked {
if (userOp.nonce != noncet+)
{ return SIG_VALIDATION_FAILED;

if
(ECDSA.recove
r(
getUOPSignedHash (SignatureType (uint8 (bytesl (userOp.signature[0:1]
))), msg.sender,
userOp
),
userOp.signature([33:]
) != owner
) A
return SIG VALIDATION FAILED;
} else {
return uint256 (bytes32 (userOp.signature[1:33]));
}
}
function

validateUserOpWithoutSig(UserO
peration calldata userOp,
bytes32,
address,
uint256 missingAccountFunds
) public virtual returns (uint256)
{ if (missingAccountFunds != 0)
{
payable (msg.sender) .call{ value:
missingAccountFunds, gas:
type (uint256) .max
PO G
}
unchecked {
if (userOp.nonce != noncet+)
{ return SIG VALIDATION FAILED;

if
(ECDSA.recove
r(
getUOPSignedHash (
SignatureType (uint8 (bytesl (userOp.signature[0:1]))),
msg.sender,

userOp

) s

userOp.signature[33:]

) != owner

return uint256 (bytes32 (userOp.signature[1:33]));
} else {

return uint256 (bytes32 (userOp.signature[1:33]));

Solution

Can verify that the owner of the signature is the owner before proceeding further.

Status

Fixed; In SmartAccount.sol, the functions of validateUserOp and validateUserOpWithoutSig are rewritten,

and the function can only be called by on1yEntryrPoint .

[N2] [Suggestion] Issue of the return value

Category: Design Logic Audit

Content

¢ contracts/wallet/base/SignatureManager.sol

Regardless of whether the signer is the owner, uint256 (bytes32 (userOp.signature[1:33])) will be returned.
In other words, if the data passed in includes a signature from someone other than the owner, it will still be accepted

and returned.

function
validateUserOpWithoutSig(User
Operation calldata userOp,
bytes32,
address,
uint256 missingAccountFunds

) public virtual returns (uint256) {

if
(ECDSA.recove
r(
getUOPSignedHash (SignatureType (uint8 (bytesl (userOp.signature[0:1]
))), msg.sender,
userOp
)
userOp.signature[33:]

) != owner

return uint256 (bytes32 (userOp.signature[1:33]));
} else {

return uint256 (bytes32 (userOp.signature[1:33])) ;

Solution
Data that is not signed by the owner should not be used.
Status

Acknowledged; This function is used to predict gas.

[N3] [Suggestion] Preemptive initialization
Category: Race Conditions Vulnerability

Content

e contracts/wallet/SmartAccount.sol

This function has the problem of being preempted.

function Initialize(address owner) external
{ require (getOwner () == address(0), "account: have set
up"); initializeOwners (owner);
initializeFallbackHandler (FallbackHandler) ;

initializeModules () ;

Solution

It is suggested that the initialize operation can be called in the same transaction immediately after the contract is
created to avoid being maliciously called by the attacker.

Status

Fixed; This is initialised when the contract is deployed.

[N4] [Suggestion] Conditional judgement issue

Category: Others

Content

® contracts/wallet/SmartAccount.sol

SENTINEL_MODULES is a 0x0000000000000000000000000000000000000001 address, msg.sender ! =

SENTINEL_MODULES will only result in true.

function
execTransactionFromModule (addr
ess to,
uint256 wvalue,
bytes calldata data,
Enum.Operation operation
) public virtual {
// Only whitelisted modules are allowed.
require (
msg.sender != SENTINEL MODULES && modules[msg.sender]
"GS104"
) 7
// Execute transaction without further confirmations.
if (
execute (
ExecuteParams (false, to, value, data, ""),
operation,
gasleft ()
)

) emit ExecutionFromModuleSuccess (msg.sender) ;

else emit ExecutionFromModuleFailure (msg.sender) ;

Solution
Conformity to design expectations.
Status

Fixed

[N5] [Suggestion] Redundant codes

Category: Others

Content

+ contracts/paymaster/FreeGasPaymaster.sol

sigValidate is not used, if don't need to judge, can return sigTime directly.

function
validatePaymasterUserOpWithoutSig(UserO
peration calldata userOp, bytes32,

= address (0),

uint256
) external view override returns (bytes memory, uint256) ({

uint256 sigTime = uint256 (bytes32 (userOp.paymasterAndData[20:52])) ;

bool sigValidate = verifyingSigner !=
getHash (userOp,
sigTime) .toEthSignedMessageHash () .recover (userOp.paymasterAndData[52:]

)7

return ("", sigTime) ;

¢ contracts/paymaster/TokenPaymaster.sol

sigvalidate and requiredPrerund is not used, if don't need to judge, this part of the validation can be

removed.

function
validatePaymasterUserOpWithoutSig(User
Operation calldata userOp,
bytes32 userOpHash,
uint256 requiredPreFund
) external view override returns (bytes memory, uint256) {
address token = address (bytes20 (userOp.paymasterAndData[20:40]));
uint256 exchangeRate = uint256 (bytes32 (userOp.paymasterAndData[40:72])) ;
uint256 sigTime = uint256 (bytes32 (userOp.paymasterAndDatal[72:104]));
if (exchangeRate >= tokenPricelLimitMax) {
(uint256 price, uint256 decimals) = IPriceOracle (priceOracle)
.exchangePrice (token) ;
exchangeRate =
(price * 10 ** IERC20Metadata (token) .decimals()) /
10 ** decimals;
}
bool sigValidate = verifyingSigner !=
getHash (userOp, token, exchangeRate, sigTime)
.toEthSignedMessageHash ()

.recover (userOp.paymasterAndData[104:]) ;

return (
abi.encode (userOpHash, userOp.sender, token, exchangeRate),

sigTime

Solution

Unnecessary code can be deleted.

Status

Acknowledged; This function is used to predict gas.

[Né] [High] The issue of the transfer amount

Category: Design Logic Audit

Content

® contracts/paymaster/TokenPaymaster.sol

The issue arises in the function swapToNative. After the conversion of tokens to native tokens via swapToNative, the
amount of tokens is not guaranteed to be 1:1. Consequently, it is incorrect to use the initial token amount as the

amount for the subsequent native token transfers.

function swapToNative (IERC20 token, uint256 amount) external onlyOwner
{ token.safeTransfer (swapHelper, amount);
ISwapHelper (swapHelper) . swapToNative (address (token)) ;
IEntryPoint (supportedEntryPoint) .depositTo{value: amount} (
address (this)
) ;//SLOWMIST//

Solution

After the token to native token swap, the available balance of native tokens should be checked and used as the
amount for the native token transfer operation.

Status

Fixed

[N7] [High] Shadow variable issue
Category: Design Logic Audit

Content

e contracts/paymaster/swapHelper.sol

The variable amountout is redeclared within the scope of the function swapToNativeviauniv2, which

subsequently leads to an incorrect return value of 0.

function
swapToNativeViaUniV2 (a
ddress tokenIn

) internal returns (uint256 amountOut) {

uint256 tokenInBalance = IERC20 (tokenIn) .balanceOf (address(this));

uint256 minAmountOut =

(priceOracle.getValueOf (tokenIn,

WETH,
tokenInBalance

) * (le6 - slippageOf (tokenIn))) / le6;

address|[] memory path = new address|[] (2);

path[0] = tokenIn;

path[l] = WETH;

IERC20 (tokenIn) .approve (address (uniV2Router), tokenInBalance) ;

uniV2Router.swapExactTokensForETH (
tokenInBalance,
minAmountOut,
path,
address (this),
block.timestamp

)

uint256 amountOut = address (this) .balance;//SLOWMIST//

require (
amountOut >= minAmountOut, "swapHelper:
amountOut < minAmountOut"

)7

payable (msg.sender) .transfer (amountOut) ;

Solution
Delete duplicate statements.
Status

Fixed

[N8] [Low] Value subject matter issue

Category: Design Logic Audit

Content

*

contracts/interfaces/IPriceOracle.sol

The concern pertains to the getValueOf function in the IPriceOracle.sol contract. This function calculates the value of
a given amount of tokenlIn in terms of quote token. The calculation relies on prices fetched from the exchangePrice

function for both tokens and takes into consideration the token decimals.

The critical point is to ensure that the priceln for tokenIn and the priceQuote for quote token are both derived from
the same base value. If not, the value calculation may lead to inaccurate results, thereby affecting the correctness of

the token exchange mechanism.

function getValueOf (
address tokenIn,
address quote,
uint256 amountIn
) external view virtual override returns (uint256 value)
{ (uint256 priceIn, uint8 decimalsIn) =
exchangePrice (tokenlIn) ;
(uint256 priceQuote, uint8 decimalsQuote) = exchangePrice (quote) ;
if (
decimalsIn + tokenDecimals (tokenIn) >

decimalsQuote + tokenDecimals (quote)

value =
((amountIn * pricelIn) / priceQuote) *
]_O * K
(decimalsQuote +
tokenDecimals (quote) -
(tokenDecimals (tokenIn) + decimalsIn));
} else {
value =
((amountIn * priceln) *
]_O * %
(decimalsQuote +
tokenDecimals (quote) -
(tokenDecimals (tokenIn) + decimalsIn))) /
priceQuote;

Solution
The subject matter of the guarantee value is the same.
Status

Acknowledged; Will use the value subject matter is the same as the prophecy machine.

[N9] [Medium] The DoS issue

Category: Denial of Service Vulnerability

Content

* contracts/interfaces/IPriceOracle.sol

When the condition decimalsIn + tokenDecimals (tokenIn) >decimalsQuote + tokenDecimals (quote)

is true, decimalsQuote + tokenDecimals (quote) — (tokenDecimals (tokenIn) + decimalsIn)) will fail.

function getValueOf (

)

Solution

address tokenlIn,
address quote,

uint256 amountIn

external view virtual override returns (uint256 value)

{ (uint256 pricelIn, uint8 decimalsIn) =
exchangePrice (tokenln) ;
(uint256 priceQuote, uint8 decimalsQuote) = exchangePrice (quote) ;
if (
decimalsIn + tokenDecimals (tokenIn) >

decimalsQuote + tokenDecimals (quote)

) {//
value =
((amountIn * priceIn) / priceQuote) *
1LQ ===
(decimalsQuote +
tokenDecimals (quote) -
(tokenDecimals (tokenIn) + decimalsIn));//SLOWMIST//
} else {
value =

((amountIn * priceln) *
10 **
(decimalsQuote +
tokenDecimals (quote) -
(tokenDecimals (tokenIn) + decimalsIn)))

priceQuote;

Give the correct calculation formula.

Status

Fixed

[N10] [Suggestion] Gas optimization
Category: Gas Optimization Audit

Content

¢ contracts/@eth-infinitism-v0.4/StakeManager.sol

info doesn't need to be persistent, can use memory to store it temporarily, you don't need to use storage.

function depositTo (address account) public payable

{ internalIncrementDeposit (account, msg.value);
DepositInfo storage info = deposits[account]; //SLOWMIST//
emit Deposited (

msg.sender,

address (this),

account,

msg.value,

info.deposit

function addStake (uint32 unstakeDelaySec) public payable
{ DepositInfo storage info = deposits[msg.sender];
require (_unstakeDelaySec > 0, "must specify unstake delay");
require (
_unstakeDelaySec >= info.unstakeDelaySec,
"cannot decrease unstake time"
) i
uint256 stake = info.stake + msg.value;
require (stake > 0, "no stake specified");
require (stake < type (uintll2) .max, "stake overflow") ;
deposits[msg.sender] = DepositInfo (
info.deposit,
true,
uintll2 (stake),
_unstakeDelaySec,
0
) i

emit StakeLocked (msg.sender, stake, unstakeDelaySec):;

Solution

Using memory.

Status

Acknowledged

[N11] [Low] Flag Bit Suggestions for Initialisation Functions

Category: Design Logic Audit

Content

® contracts/wallet/SmartAccount.sol

The issue resides in the Initialize function. It uses the address(0) as the condition to check if the smart contract has

been initialized. However, this is not a reliable or best practice method for initialization checks.

function Initialize(address owner) external
{ require(getOwner () == address(0), "account: have set
up"); initializeOwners (_owner) ;
initializeFallbackHandler (FallbackHandler) ;

initializeModules () ;

Solution

It is suggested to adopt the Initializable module provided by the OpenZeppelin library for initialization checks. The
Initializable module provides a secure and industry standard way to handle smart contract initialization, thus
preventing any possible loopholes or errors due to improper initialization checks.

Status

Acknowledged

[N12][Suggestion] Missing eventrecord

Category: Malicious Event Log Audit

Content

Key Parameter Settings Unrecorded Events .

® contracts/core/BundlerDepositHelper.sol

The following functions do not log events setvalidentryPoint.

® contracts/paymaster/TokenPaymaster.sol

The following functions do not log events addTolhitelist , removeFromWhitelist , setSwapHelper .

* contracts/paymaster/FreeGasPaymaster.sol

The following functions do not log events addTolhitelist , removeFromWhitelist .
Solution

Recording events.

Status

Acknowledged

[N13] [Suggestion] call() should be used instead of transfer()

Category: Others

Content

The transfer() and send() functions forward a fixed amount of 2300 gas. Historically, it has often been recommended
to use these functions for value transfers to guard against reentrancy attacks. However, the gas cost of EVM
instructions may change significantly during hard forks which may break already deployed contract systems that
make fixed assumptions about gas costs. For example. EIP 1884 broke several existing smart contracts due to a

cost increase of the SLOAD instruction.

function
swapToNative (address
tokenIn
) external override returns (uint256 amountOut)

{ return swapToNativeViaUniV2 (tokenIn) ;

function
swapToNativeViaUniV2 (addr
ess tokenIn
) internal returns (uint256 amountOut) {

uint256 tokenInBalance = IERC20 (tokenIn) .balanceOf (address(this));

uint256 minAmountOut =
(priceOracle.getValueOf (tokenIn,
WETH,
tokenInBalance

) * (le6 - slippageOf (tokenIn))) / 1le6;

address[] memory path = new address|[] (2);

path[0]
path[1l] = WETH;

tokenIn;

IERC20 (tokenIn) .approve (address (uniV2Router), tokenInBalance) ;
uniV2Router.swapExactTokensForETH (

tokenInBalance,

minAmountOut,

path,

address (this),

block.timestamp
)

uint256 amountOut = address(this) .balance;
require (
amountOut >= minAmountOut, "swapHelper:
amountOut < minAmountOut"

)

payable (msg.sender) .transfer (amountOut) ;

Solution

Itis recommended to use call() instead of transfer(), but be sure to respect the CEI pattern and/or add re-entrancy
guards.

Status

Acknowledged; Here transfer is for paymaster receive() doesn't consider transfer to other address. So there is no

such issue in the actualscenario.

[N14] [Low] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

The owner of the following contracts has a lot of power, and if the private key is leaked, it can cause a lot of damage.

e contracts/paymaster/oracle/ExOracleAdapter.sol

owner can setExOraclePriceData,
owner can setPriceType

owner can setOracleDecimals

e contracts/paymaster/FreeGasPaymaster.sol

owner can addToWhitelist
owner can removeFromWhitelist
owner can withdrawERC20

owner can withdrawDepositNativeToken

® contracts/paymaster/TokenPaymaster.sol

owner can withdrawERC20

owner can withdrawDepositNativeToken
owner can swapToNative

owner can setSwapHelper

owner can setPriceOracle

owner can addToWhitelist

owner can removeFromWhitelist

® contracts/core/Storage.sol

owner can setWalletWhitelistControl
owner can setUnrestrictedBundler

owner can setModuleWhitelistControl
owner can setBundlerOfficialWhitelist
owner can setWalletProxyFactoryWhitelist

owner can setModuleWhitelist

® contracts/wallet/SmartAccountProxyFactory.sol

owner can setSafeSingleton

® contracts/paymaster/swapHelper.sol

owner can setSlippage

Solution

In the short term, transferring owner ownership to multisig contracts is an effective solution to avoid single-point risk.

But in the long run, it is a more reasonable solution to implement a privilege separation strategy and set up multiple
privileged roles to manage each privileged function separately. And the authority involving user funds should be
managed by the community, and the authority involving emergency contract suspension can be managed by the
EOA address. This ensures both a quick response to threats and the safety of user funds.

Status

Acknowledged; Deployed on ETH, BNB, POLYGON, OP, AVAX, ARBITRUM,

Owner's multi-signature address 0x8724e70e7e608a9a06d2bf32cal17162a3c054061.

Deployed on OKTC

Owner's multi-signature address 0x41d49b4041606dfa7108111cfe1501399da8b976

[N15] [High] PayMaster signature check is missing

Category: Design Logic Audit

Content

¢ contracts/paymaster/TokenPaymaster.sol

In the method validatePaymasterUserOp within the file, there is an issue concerning the validation of signature data.
Specifically, if exchangeRate surpasses or equals tokenPriceLimitMax, there is no validation conducted for the

signature data.

This omission may permit malicious actors to exploit this behavior and utilize the funds of other paymasters to cover

the gas expenses, potentially leading to losses of funds.

function
validatePaymasterUserOp (UserO
peration calldata userOp,
bytes32 userOpHash,
uint256
) external view override returns (bytes memory, uint256) {
address token = address (bytes20 (userOp.paymasterAndDatal[20:40]));
uint256 exchangeRate = uint256 (bytes32 (userOp.paymasterAndDatal[40:72]));
uint256 sigTime = uint256 (bytes32 (userOp.paymasterAndData[72:104]));

if (exchangeRate >= tokenPricelLimitMax) ({
uint256 oracleExchangeRate =
IPriceOracle (priceOracle) .exchangeRate (token

) ;

return (
abi.encode (
userOpHash,
userOp.sender,
token,

oracleExchangeRate

) s
sigTime
) i
} else if (
verifyingSigner ==
getHash (userOp, token, exchangeRate, sigTime)
.toEthSignedMessageHash ()

.recover (userOp.paymasterAndData[104:])

return (
abi.encode (userOpHash, userOp.sender, token, exchangeRate),
sigTime
)
} else {

return ("", SIG VALIDATION FAILED);

Solution
To verify paymaster signature data.
Status

Fixed

[N16] [Low] Risk of Stale Price Data from Oracle

Category: Design Logic Audit

Content

* contracts/paymaster/oracle/ChainlinkOracleAdapter.sol

The method cxchangePrice in the ChainlinkOracleAdapter contract is susceptible to potential issues due to an
insufficient handling of the time data returned by tokenpPricereed.latestRoundData () . This could lead to

inaccuracies if the Oracle is down and the price returned is outdated.

To safeguard against such scenarios, it is essential to implement appropriate measures to handle the time returned
by tokenPricereed. latestRoundbata () . This could involve incorporating mechanisms to validate the freshness

of the returned data or handle situations where the prediction machine might be down. These precautions would

increase the reliability and accuracy of the price data used within the system.

function
exchangePrice (addre
ss token
) public view virtual override returns (uint256 price, uint8 decimals)
{ AggregatorV3Interface tokenPriceFeed = AggregatorV3Interface (
priceFeed[token]
) i

require (tokenPriceFeed != AggregatorV3Interface (address(0)), "");

4

/* uint80 roundID */ int256 price /*uint startedAt*/ /*uint timeStamp*/
/*uint80 answeredInRound*/,

4

4

) = tokenPriceFeed.latestRoundData () ;

// price -> uint256

require (_price >= 0, "price is negative");
price = uint256(price);

decimals = tokenPriceFeed.decimals ()

¢ contracts/paymaster/oracle/ExOracleAdapter.sol

IExOraclePriceData (exOracle) .get () willalso return a time, if it is the time of the record, the same also need

to determine whether it is too long without updates

function
exchangePrice (addres
s token
) public view virtual override returns (uint256 price, uint8 decimals) {

require (priceFeed[token] != address(0), "");

(price,) =
IExOraclePriceData (exOracle) .get (priceTy
pe[token],

priceFeed[token]

decimals = oracleDecimals[token];

Solution
Not using prices that are not within the expected time frame.
Status

Fixed

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002207180002 SlowMist Security Team 2025.10.20 Low Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 3 high risk, 1 medium risk, 5 low risk, 7 suggestion vulnerabilities.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this
report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this
project, and is not responsible for them. The security audit analysis and other contents of this report are based on
the documents and materials provided to SlowMist by the information provider till the date of the insurance report
(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,
deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with
the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only
conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

G sLawmisy

Official Website
www.slowmist.com

N
E-mail
team@slowmist.com

Y

Twitter
@SlowMist_Team

O

Github
https://github.com/slowmist

	1Executive Summary
	2Audit Methodology
	3Project Overview
	3.1Project Introduction
	3.2Vulnerability Information
	NOTitle

	4Code Overview
	4.1Contracts Description
	Deployed Addresses
	Core Contracts
	ContractsAddress

	Oracle Adapters
	DefaultCallbackHandler
	OKXEntryPoint
	StakeManager

	4.3Vulnerability Summary
	Solution
	Status
	Category: Design Logic Audit Content
	Solution
	Status
	Solution
	Status
	[N4] [Suggestion] Conditional judgement issue
	Category: Others Content
	Solution
	Status

	[N5] [Suggestion] Redundant codes
	Category: Others Content
	Solution
	Status

	[N6] [High] The issue of the transfer amount
	Category: Design Logic Audit Content
	Solution
	Status
	Solution
	Status

	[N8] [Low] Value subject matter issue
	Category: Design Logic Audit Content
	Solution
	Status
	Solution
	Status
	Solution
	Status

	[N11] [Low] Flag Bit Suggestions for Initialisatio
	Category: Design Logic Audit Content
	Solution
	Status

	[N13] [Suggestion] call() should be used instead o
	Category: Others Content
	Solution
	Status
	Solution
	Status

	[N15] [High] PayMaster signature check is missing
	Category: Design Logic Audit Content
	Solution
	Status

	[N16] [Low] Risk of Stale Price Data from Oracle
	Category: Design Logic Audit Content
	Solution
	Status

	5Audit Result
	6Statement

